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Abstract
We obtain the number fractions xi , the average areas 〈A〉i and the average
perimeters 〈P 〉i of i-sided bubbles in a two-dimensional foam by minimizing the
total surface energy and assuming a simple relation between 〈P 〉i and 〈√A〉i .
Calculations for linear and Weibull distributions of the square root of the bubble
area yield large deviations, particularly at small i, from Lewis’s and Desch’s
laws, which linearly relate 〈A〉i and 〈P 〉i , respectively, to i. Nevertheless, we
find good agreement with experimental results for xi, 〈P 〉i and 〈A〉i in foams.

PACS numbers: 83.80.Iz, 82.70.Rr

1. Introduction

Lewis’s law [1–4] states that the average area 〈A〉i of i-sided cells in a ‘random’ partition of
the plane into 3-connected cells (〈i〉 = 6, i � 3, where the angular brackets denote an average
over all cells) increases linearly with i:

〈A〉i = 〈A〉[1 + c(i − 6)] (1)

where 〈A〉 ≡ 〈A〉6 is the average cell area and c is a constant. This law holds approximately
for a variety of two-dimensional (2D) (3-connected) networks and for planar sections of
three-dimensional (3D) (4-connected) networks, including liquid foams [5–8], polycrystals
[9–11], biological tissues [1–4, 12–14], Voronoi tesselations of assemblies of discs moving on
an air table [15, 16], pre-mixed flame cells [17], surface-aggregated polyelectrolyte micelles
[18], low-density microcellular materials [19] and Bénard–Marangoni convection cells [20].
Although large deviations are frequently found, particularly at low i [6, 7, 15], the law is exact
for particular 2D networks [21]. An alternative approximate law has been proposed which in
some cases gives better results: this relates the average perimeter 〈P 〉i of i-sided cells linearly
to i:

〈P 〉i = 〈P 〉[1 + c′(i − 6)] (2)
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where 〈P 〉 ≡ 〈P 〉6 is the average perimeter and c′ is a constant. Equation (2) has been referred
to in the literature as Desch’s law [22, 23] (or, less commonly, as Feltham’s law [8, 24]);
recently it was found to describe the length of cracks produced by thermal shock in ceramic
tableware [25]. Interestingly, for some non-equilibrium systems such as galactic bubbles near
supernova 1987A [26] and patterned breath figures [27], both Lewis’ and Desch’s laws seem
to hold approximately. The best-fit coefficients c and c′ in equations (1) and (2), respectively,
take values in a narrow range for the different networks analysed, usually between 0.10 and
0.30. These laws are to be regarded as empirical, although they can be rationalized on the
basis of the minimum entropy principle [28] (but see [29]). In addition, there have been a few
attempts to derive Lewis’s law in the context of Voronoi networks [16, 30, 31] or of a random
neighbour model [32].

Broadly speaking, either law states that cells with many sides tend to be larger, and cells
with few sides tend to be smaller. Since cells of small i tend to be surrounded by cells of large
i and vice versa (Aboav–Weaire law [33–35]), it follows that small cells tend to be surrounded
by large cells and vice versa.

In this paper we investigate the correlation between bubble areas and perimeters and
number of bubble sides in 2D dry foams, and derive equations for 〈A〉i and 〈P 〉i of i-sided
bubbles (where n � i � N) by requiring that the total energy (i.e. the total film perimeter in
a dry foam) be minimized for a given distribution of bubble areas p(A) (section 3). We also
determine the number fractions of i-sided bubbles, xi . The resulting relations depend on p(A)

and also on the assumed form of the ratio ei = 〈P 〉i /〈
√

A〉i between the average perimeter
and the average square root of area of i-sided bubbles. Taking ei as for regular bubbles (i.e.
bubbles whose sides are identical circular arcs, meeting internally at 120◦), we have tested the
applicability of both Lewis’s and Desch’s laws for a linear and a Weibull [36] distribution of
the square root of the bubble area; the former because of its simplicity, the latter because it is
a good representation of experimental results.

This paper is organized as follows: in section 2 we formulate the problem and define the
key quantities in our study. Then in section 3 we effect the minimization of the surface energy.
Our results for the two particular bubble area distributions mentioned above are presented in
section 4. Finally, section 5 summarizes our findings.

2. Formulation of the problem

It is convenient to introduce the variable a ≡ √
A and use, instead of the distribution of areas

p(A), the distribution f (a) of a. They are related by

f (a) = 2
√

Ap(A) p(A) = f (a)

2a
. (3)

The minimum and maximum values of a are denoted by an and aN+1, respectively, where n
and N are the minimum and maximum numbers of bubble sides (n � i � N). We assume
that the ratio ei = 〈P 〉i /〈

√
A〉i decreases with increasing i, as is the case for regular bubbles

[37]. Our aim is to minimize the perimeter for given f (a) and given n and N. We therefore
associate smaller areas with bubbles with fewer sides and vice versa; 〈A〉i and 〈P 〉i are
therefore increasing functions of i (cf equations (1) and (2)). To make the problem tractable,
we assume that the minimum perimeter is attained when all i-sided bubbles have a in some
range [ai, ai+1] such that ai+1 > ai , for all i, so there are no bubbles with other than i sides
in [ai, ai+1]. The whole range [an, aN+1] of a thus divides into sub-ranges, each of which
contains bubbles all with the same number of sides i, as shown schematically in figure 1. This
is obviously an approximation, as in a real foam the sub-ranges may overlap: a bubble with j

sides can be smaller than another with k < j sides.
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Figure 1. The full range [an, aN+1] of a ≡ √
A is divided into intervals [ai , ai+1] such that all cells

with a in the ith interval have i sides (n � i � N). The extrema, an and aN+1 (an � a � aN+1), are
given: all other ai are determined by perimeter minimization. The distribution f (a) (represented
schematically) is the probability density of a.

We shall not be concerned here with the actual space-filling geometry or topology of the
foam, except for the requirement that 〈i〉 = 6 (trivalent networks), whence it follows that
n � 6 and N � 6. Moreover, we require that there should be both n- and N-sided bubbles,
but there may be no bubbles with some intermediate numbers of sides.

For a given f (a), the fraction of xi of i-sided bubbles (i.e. which have a ∈ [ai, ai+1]) is

xi =
∫ ai+1

ai

f (a) da

N∑
i=1

xi = 1 (4)

with

〈i〉 =
N∑

i=1

ixi = 6. (5)

The average square-root area of i-sided bubbles is then

〈a〉i = 〈
√

A〉i = 1

xi

∫ ai+1

ai

af (a) da (6)

and their average area is

〈A〉i = 1

xi

∫ ai+1

ai

a2f (a) da. (7)

We assume that the average perimeter 〈P 〉i of i-sided cells is related to their average
square-root area 〈a〉i by

〈P 〉i = ei〈a〉i (8)

which is of the same form as for regular bubbles [37]; ei is a weakly decreasing function of i
only, see figure 2.

We consider a foam composed of a large number N of bubbles and treat it as unbounded.
The total perimeter of the N bubbles is

Ptot = 1

2

N∑
i=n

Ni〈P 〉i (9)
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Figure 2. From top to bottom: ei , λi and 1/λi versus i for regular bubbles (i � 3).

where Ni is the number of i-sided bubbles, and the factor 1/2 comes from the fact that each
film is shared between two bubbles. Combining equations (8) and (9) yields, for the perimeter
per bubble,

P̄ ≡ Ptot

N
= 1

2

N∑
i=n

eixi〈a〉i . (10)

For given f (a), n and N, we need to find the ai that minimize P̄ while satisfying equation (5).
We then use these to calculate xi , 〈A〉i and 〈P 〉i as functions of i, in order to test Lewis’s and
Desch’s laws.

3. Perimeter minimization

Here it is shown how the perimeter minimization problem formulated in the preceding section
can be solved. We start by using equation (5) to express one of the ai , say aN , as a function
of the remaining ai (i �= N):

a = a(an+1, . . . , aN−1) (11)

and then impose the minimum condition on P̄ (an+1, . . . , aN−1):

∂P̄

∂ai

= 0 (i = n + 1, . . . , N − 1). (12)

This has been checked a posteriori indeed to yield a minimum (and not a maximum).
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For given f (a) (and an and aN+1) we define the cumulative density

G(a) =
∫ a

an

f (a′) da′ (13)

and

H(a) =
∫ a

an

a′f (a′) da′. (14)

Furthermore, we introduce the notation

Gi ≡ G(ai) Hi ≡ H(ai) (15)

for i between n and N + 1. We have

Gn = Hn = 0 (16)

GN+1 = 1 HN+1 = 〈a〉 (17)

dGi

dai

= f (ai)
dHi

dai

= aif (ai) (18)

and, from equations (4) and (6),

xi = Gi+1 − Gi (19)

xi〈a〉i = Hi+1 − Hi. (20)

Combining equations (5) and (10), respectively, with equations (4), (13) and (14) yields

6 =
N∑

i=n

i(Gi+1 − Gi) (21)

2P̄ =
N∑

i=n

ei(Hi+1 − Hi) (22)

which, upon rearrangement, become

N − 6 =
N∑

i=n+1

Gi (23)

2P̄ =
N∑

i=n+1

λiHi + eN 〈a〉 (24)

where we have introduced

λi = ei−1 − ei > 0. (25)

We next solve equation (23) for aN , as a function of the remaining ai (n + 1 � i � N − 1):

GN ≡ G(aN) = N − 6 −
N−1∑
i=n+1

Gi. (26)

Inserting aN thus (implicitly) determined into equation (24), we obtain

2P̄ =
N−1∑
i=n+1

λiHi + λNHN(aN(an+1, an+2, . . . , aN−1)) + eN 〈a〉 (27)
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which is a function of an+1, . . . , aN−1. The last term in equation (27) is a constant for given N
and f (a). Minimization of the perimeter is effected by setting

2
∂P̄

∂ai

= λi

dHi

dai

+ λN

∂HN

∂ai

= 0 (i = n + 1, . . . , N − 1) (28)

where we have used the fact that Hi depends only on ai (and not on the other ak, k �= i). Now,
from equation (18),

dHi

dai

= aif (ai) (i = n + 1, . . . , N − 1) (29)

∂HN

∂ai

= dHN

daN

∂aN

∂ai

= aNf (aN)
∂aN

∂ai

. (30)

As noted above, equation (26) defines aN as an implicit function of an+1, . . . , aN−1, whence

∂aN

∂ai

= − ∂GN/∂ai

∂GN/∂aN

= − f (ai)

f (aN)
. (31)

Equation (28) becomes, upon insertion of equations (29)–(31),

2
∂P̄

∂ai

= (λiai − λNaN)f (ai) = 0 (i = n + 1, . . . , N − 1). (32)

The minimum is thus achieved for

ai = λN

λi

aN ≡ k

λi

(i = n + 1, . . . , N − 1) (33)

a remarkably simple result; k is a constant to be determined.
We assumed at the start that ai+1 > ai , hence λi must decrease with increasing i. This

is indeed the case for regular bubbles, as will be further discussed below. To find k we insert
equation (33) into equation (23):

N∑
i=n+1

Gi

(
k

λi

)
= N − 6 (34)

where we have defined Gi(k/λi) ≡ Gi(ai = k/λi); this equation can be solved for k.
An admissible solution for the minimum perimeter requires that equation (34) has a

positive solution and an < k/λn+1 and aN+1 > k/λN . The latter conditions are met when
an = 0 and aN+1 = ∞. However, there may be distributions f (a) for which there is no
solution; in such cases, the smallest P̄ is not a proper minimum.

4. Results

We approximate ei by Graner et al’s result for regular Plateau cells [37]:

ei = 2α
√

i√
α − sin α sin π

6
sin π

i

α = π

(
1

i
− 1

6

)
. (35)

In figure 2 we plot ei, λi and 1/λi for regular cells (from equation (35)).
The following distributions f (a) of a = √

A have been considered:

1. Linear distribution: f (a) = ε + 2(1 − ε)a for a ∈ [0, 1] (0 � ε � 2). If ε = 1 this
reduces to the uniform distribution, f (a) = 1.
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Figure 3. Examples of distributions used in the calculation of P̄ min: (a) linear distribution f (a)

of a ≡ √
A for different values of ε; (b) Weibull distribution f (a) of a for different combinations

of c and ν; (c) distribution p(A) of A corresponding to the linear distribution f (a) of a in (a); (d)
distribution p(A) of A corresponding to the Weibull distribution f (a) of a in (b).

2. Weibull distribution [36]: f (a) = κνaν−1 exp(−κaν) for a ∈ [0,∞) (κ, ν > 0). If
ν = 1.0 this reduces to the (pure) exponential distribution; it was chosen for its ability to
reproduce realistic shapes for appropriate choices of κ and ν.

Example distributions of both types are plotted in figure 3, together with the corresponding
area distributions p(A) (related by equations (3)). We have also used a cubic polynomial
distribution of a ∈ [0, 1] but do not present those results here.

For each of these distributions and a choice of (n,N), k is calculated from equation (34);
then ai from equation (33); finally, the minimum perimeter per bubble, P̄ min, is obtained from
equation (24), and xi, 〈A〉i and 〈P 〉i from equations (4), (7) and (8), respectively. Details of
these calculations are given in the appendix. Values of 2P̄ min/〈a〉 for the linear and Weibull
distributions of a are collected in tables 1 and 2, respectively.

For the linear distribution, we have found that P̄ cannot be minimized for arbitrary (n,N).
For example, for ε = 1.0 (uniform distribution of a) and n = 3, there is no minimum if N > 8:
the solution of equation (34) for k leads to a8 > 1. On the other hand, for ε = 2.0 and n = 3,
equation (34) has no real roots. This appears to be a consequence of the fact that the minimum
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Table 1. Minimum perimeter 2P̄ min/〈a〉 of films in a foam with a linear distribution of the linear
bubble size a ≡ √

A. A dash entry means there is no minimum of P̄ .

2P̄ min/〈a〉
n N ε = 0.0 ε = 0.5 ε = 1.0 ε = 2.0

3 7 3.722 026 3.721 636 3.721 368 3.721 186
3 8 – 3.721 630 3.721 278 3.720 936
3 9 – – – 3.720 905
3 10 – – – 3.720 903
3 11 – – – –

4 7 3.722 041 3.721 701 3.721 444 3.721 257
4 8 – 3.721 699 3.721 385 3.721 051
4 9 – – – 3.721 032
4 10 – – – 3.721 032
4 11 – – – –

5 7 3.722 113 3.721 875 3.721 660 3.721 462
5 8 – – 3.721 651 3.721 361
5 9 – – – 3.721 357
5 10 – – – –
5 11 – – – –

Table 2. Minimum perimeter 2P̄ min/〈a〉 of films in a foam with a Weibull distribution of the linear
bubble size a ≡ √

A. Now there is a minimum for every (n,N).

2P̄ min/〈a〉
n N κ = 1.0, ν = 3.0 κ = 1.5, ν = 2.0

3 7 3.722 076 3.721 742
3 8 3.722 071 3.721 678
3 9 3.722 071 3.721 673
3 10 3.722 071 3.721 673
3 11 3.722 071 3.721 673
3 12 3.722 071 3.721 673

4 7 3.722 079 3.721 760
4 8 3.722 074 3.721 700
4 9 3.722 074 3.721 696
4 10 3.722 074 3.721 695
4 11 3.722 074 3.721 695
4 12 3.722 074 3.721 695

5 7 3.722 113 3.721 848
5 8 3.722 109 3.721 808
5 9 3.722 109 3.721 806
5 10 3.722 109 3.721 806
5 11 3.722 109 3.721 806
5 12 3.722 109 3.721 806

condition for P̄ cannot be met for all (n,N) if the range of a is bounded. The same is true of
the cubic polynomial distribution.

Table 1 and figure 4 show illustrative results for the linear distribution. In general, the
distributions xi of i-sided bubbles are very different from those obtained experimentally, which
have a maximum around i = 6. The plots of 〈A〉i and 〈P 〉i exhibit large deviations from
linearity, although their (mostly) upward concave shape agrees with experiment [6].
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Figure 4. From top to bottom: xi , 〈A〉i /〈A〉 and 〈P 〉i /〈P 〉 versus i for minimum-perimeter
arrangements of bubbles with a linear distribution of a ≡ √

A, for: (a) ε = 1.0 (uniform
distribution); and (b) ε = 2.0. The slopes of the straightest (large i) portions of the 〈A〉i /〈A〉 and
〈P 〉i /〈P 〉 versus i curves are in the ranges 0.9–1.6 and 0.5–0.6, respectively.

Results for the Weibull distribution of a, which is of the type found in experiments, are
more interesting. Now P̄ has a minimum for any choice of (n,N), see table 2, and the xi

versus i curves have the right inverted V shape for n = 3 or 4, see figure 5. Curiously, for
large N, typically N � 11 or 12, there are virtually no bubbles with i � 10, i.e. xi drops below
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Figure 5. Same as in figure 4, but for cells with a Weibull distribution of a ≡ √
A, for (a) κ = 1.0,

ν = 3.0; (b) κ = 1.5, ν = 2.0. The effect of changing N is negligible on the scale of the plots.
The slopes of the straightest (large i) portions of the 〈A〉i /〈A〉 and 〈P 〉i /〈P 〉 versus i curves are in
the ranges 2.3–6.8 and 0.5–0.8, respectively.

machine precision for i � 10. This is in line with what is observed in real foams, where no
bubbles with more than ∼10 sides are found. 〈A〉i and 〈P 〉i are similar to those obtained for
the linear distribution: again they deviate considerably from linearity, yet agree reasonably
well with experiment.
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For both distributions (linear and Weibull), P̄ min decreases as N increases at fixed n, and
increases as n increases at fixed N. In all cases, P̄ min is below its value for a foam consisting
exclusively of regular hexagonal bubbles. This implies that it is a minimum, rather than a
maximum, of P̄ . When there is no solution of the minimization equation (28), there must
nevertheless be a choice of ai that gives the smallest P̄ for given (n,N); we have not attempted
to find it.

5. Discussion

We have shown how, given the distribution of bubble areas in a foam, it is possible to obtain
the distribution of the number of bubble sides xi , as well as average quantities such as the
average area 〈A〉i and average perimeter 〈P 〉i of i-sided bubbles. We have, however, been
forced to make a number of simplifications. Firstly, we assumed that j -sided bubbles always
have smaller area than k-sided bubbles if j < k. Secondly, we employed an approximate
relation between 〈P 〉i and 〈√A〉i , equation (8), with ei (weakly) dependent only on i and such
that λi given by equation (25) is positive and a decreasing function of i. Finally, we took
for ei their values for regular bubbles, equation (35), which satisfy the above requisites. In
disordered foams, however, bubbles are not in general regular, and a more appropriate choice
of ei would be ei = 〈P/

√
A〉i , for which no reliable expression exists. Graner et al [37]

have argued that in a foam close to its minimum energy geometry, the perimeter of films at
fixed bubble areas should not deviate too much from its value for regular bubbles: indeed, our
values of 2P̄ min/〈

√
A〉 are all very close to that proposed by Graner, 23/231/4 ≈ 3.722 419

[37]. Nonetheless, small changes in ei may lead to large changes in λi , which in turn may
significantly alter the final partitioning of bubble sizes and numbers of sides.

In spite of the above simplifications, results obtained for xi , 〈A〉i and 〈P 〉i using the more
realistic Weibull distribution of bubble areas agree qualitatively with experiment. The plots of
〈A〉i and 〈P 〉i versus i are, however, clearly not linear, as indeed is experimentally observed.
For this distribution, with a unbounded above, the energy/perimeter could be minimized for
any n and N, the minimum and maximum number of bubble sides, respectively.

A linear distribution of a yields xi very different from experiment, although 〈A〉i and
〈P 〉i are still reasonable. For this and for a cubic polynomial distribution, both defined in a
bounded range of a, there are (n,N) pairs for which P̄ does not have a minimum.
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Appendix. Calculational details

A.1. Linear distribution

For f (a) = ε + 2(1 − ε)a (0 � ε � 2) we have:

G(a) = εa + (1 − ε)a2 (A1)

H(a) = ε

2
a2 +

2

3
(1 − ε)a3. (A2)

k in equation (33) is the smaller real and positive root of the quadratic equation

(1 − ε)Ck2 + εBk − (N − 6) = 0 (A3)
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where

B =
N∑

i=n+1

1

λi

C =
N∑

i=n+1

1

λ2
i

. (A4)

(In case there are two real roots, we have checked that it is the smaller one that gives the lowest
P̄ min.) For the minimum perimeter P̄ min, equation (24) yields

2P̄ min = 2

3
(1 − ε)Ck3 +

ε

2
Bk2 + eN

(
2

3
− ε

6

)
(A5)

with k given by equation (A3). xi , 〈A〉i and 〈P 〉i follow from equations (4), (6), (7) and (8),
and have fairly simple analytical expressions.

A.2. Weibull distribution

For f (a) = κνaν−1 exp(−κaν) (κ, ν > 0) we have:

G(a) = 1 − exp(−κaν). (A6)

There is no analytical expression for H(a). Equation (33) for k was solved using NETLIB
routine HYBRD [39]. Then the integrals in equations (4), (6), (7) for xi, 〈a〉i and 〈A〉i were
performed by Romberg quadrature [38].
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